
1

Fingerprinting Across
On-Chip Memory Interconnects

Srinivas Chellappa, Fréd́eric de Mesmay, Jared C. Smolens, Babak Falsafi, James C. Hoe, and Ken Mai
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract— Pairs of cores in a chip multiprocessor (CMP)
can execute programs redundantly to detect and recover from
soft errors. Prior work assumes dedicated cross-core buses to
compare the redundant cores’ outputs for error detection. In
this paper, we investigate using the CMP’s existing on-chip
memory interconnect for comparing hashes of architectural
state updates, called fingerprints, across redundant cores. We
show that the memory system can support periodic fingerprint
comparison. Furthermore, our simulation-based results show that
for reasonable comparison intervals, the added load does not
affect memory access latency and matches the performance of a
dedicated comparison bus.

1. INTRODUCTION

The trend of increasing device density, coupled with re-
duced capacitance and noise margins mean that soft error
rates in processor datapaths will rise [1], [2]. One method to
protect the datapath is to execute programs redundantly across
cores in a chip multiprocessor (CMP) [3]–[5]. In order to
detect errors in execution, the cores must continually compare
their architectural state updates with each other. Becauseof
the substantial amount of state retired in each clock cycle
by aggressive superscalar processors, equal to the L1 cache
store port bandwidth or even the architectural register file,
researchers have investigated ways to efficiently compare the
two executions.

One method which has been proposed is architectural fin-
gerprints [6]. Architectural fingerprints compress architectural
state updates into a small hash for periodic comparison across
redundant processor cores. The fingerprint is accumulated
over a contiguous interval of instructions. Before retirement,
the cores exchange their respective fingerprint values to de-
tect single event upsets that have affected instructions in
the interval. Because a single fingerprint (e.g., 16 bits) can
cover multiple instructions, fingerprinting offers significant
bandwidth savings over directly comparing execution results.

Current techniques to compare fingerprints rely on ded-
icated datapaths between processor cores, as illustrated in
Figure 1. However, there are disadvantages to using dedicated
datapaths: they require global hardware additions and restrict
fingerprinting only between core pairs determined at design
time. The alternative, datapaths between all pairs, is unscalable
as the number of cores increases.

The observation in this paper is that CMPs already pro-
vide a datapath suitable for transporting fingerprints: theon-

chip core-cache memory interconnect. Reusing the on-chip
memory interconnect eliminates dedicated hardware datapaths,
while allowing dynamic reconfiguration of redundant execu-
tion across cores. In this paper, we show that transporting
fingerprints across the on-chip memory interconnect is viable
and offers performance comparable to dedicated datapaths.

2. APPROACH

The redundant execution design considered in this paper
is Reunion [5], briefly summarized below. The Reunion ex-
ecution model divides logical processor pairs in a CMP into
vocal andmutecores. The vocal core executes a program and
releases updates (e.g., stores) to shared caches and memory,
as in a non-redundant CMP. The mute core checks the vocal’s
execution by periodically exchanging architectural fingerprints
with the vocal. While the mute uses a private cache hierarchy
for its own loads and stores, the mute’s outputs are never
observable by other cores in the system. The cores support
rollback-recovery by leveraging the existing precise exception
support. This design preserves the traditional non-redundant
design, including the out-of-order execution core, core-cache
interface, and cache coherence protocol. The main changes
from a traditional non-redundant CMP are limited to the
shared cache controller and adding fingerprint generation and
comparison support to the cores.

However, the system evaluated in Reunion [5] assumes
dedicated datapaths between cores for fingerprint comparison.
This incurs additional global buses, dedicated solely to support
redundant execution. We observe that, because the fingerprints
are small (comparable to a cache request message), they can
instead accompany cache memory transactions on the memory
interconnect, leveraging existing datapaths for communication
between individual processor cores and the shared cache.

Related work. Other researchers have also investigated soft
error detection and correction with redundant execution ina
CMP. Mukherjee et al. [3] propose directly comparison of store
values between redundant cores to provide detection. This
requires a wide, dedicated cross-core datapath that matches the
L1 cache store bandwidth. Gomaa et al. [4] propose a similar
design that supports recovery. However, recovery requires
timely error detection for all updated architectural state. To
avoid comparing every instruction result, the authors propose
comparing the ends of instruction dependence chains, which

2

Fig. 1. Advantage of using the on-chip memory interconnect over fixed datapaths. (a) fixes the pairs that can perform DMR at design time. (b) overcomes
this, but requires hardware datapaths between all cores, which does not scale. (c) solves these problems by sending fingerprints across the existing memory
interconnect.

avoids approximately 20% of the comparisons. The results
from this paper will apply if fingerprints are used for error
detection in these redundant execution designs.

3. DESIGN

This section discusses the baseline CMP microarchitecture
and implementation of fingerprinting in the on-chip memory
interconnect and the key design tradeoffs.

3.1 Baseline CMP

We consider a baseline CMP with multiple aggressive su-
perscalar, out-of-order processor cores. Each core has itsown
private L1 instruction and data caches which are connected to
a shared L2 cache through a non-blocking crossbar. As in the
Sun OpenSPARC T1 [7], the on-chip memory interconnect
consists of crossbar paths between cores and independent
cache controller banks. Each crossbar port can both send and
receive one message on each cycle; cores do not communicate
directly.

3.2 Fingerprint Comparison

During redundant execution, each core generates a fin-
gerprint covering an interval of instructions and sends that
fingerprint to its redundant partner core. The instructionsbeing
checked are buffered in the core’s out-of-order queues (e.g., re-
order buffer and store buffer) until a corresponding, matching
fingerprint has been received from the partner core. If the
fingerprints match, the instructions are irrevocably retired. If
the fingerprints do not match, the instructions are discarded
and the cores re-execute the instruction interval.

We consider two designs for transmitting fingerprints be-
tween the redundant cores. First, our baseline redundant design
provides a dedicated datapath that incurs a fixed latency to
send each message and matches the retirement bandwidth of
the core. Second, we consider a design where fingerprints are
transmitted as messages through the existing L1 cache store
request datapath. The fingerprint transmission consumes the
processor’s cache store port and traverses the crossbar to reach
its destination. Two crossbar traversals are necessary to reach
the destination core because direct core-core communication
paths are unavailable. Fingerprint messages compete with
existing on-chip cache and coherence requests.

3.3 Design Factors

The fingerprint interval is a key design parameter which
affects (1) the bandwidth required for comparison and (2) the
amount of instruction buffering needed before comparison.

Fingerprints are transmitted at fixed instruction intervals.
To the first order, the bandwidth (measured in messages per
cycle) required for fingerprint comparisons is proportional to
the IPC (instructions per cycle) of the executing program and
inversely proportional to the fingerprint interval. The interac-
tion of fingerprint messages with existing cache transactions
creates contention at the processor’s cache ports and the shared
cache. Contention from this additional bandwidth demand can
become a dominant performance bottleneck.

Because a fingerprint cannot be generated until all instruc-
tions in the interval have completed execution, longer intervals
also incur additional pipeline resource occupancy (e.g., re-
order buffer and store buffer entries) while instructions are
being collected and checked. However, speculative execution
can continue, so the overall performance impact from this
effect is small.

Finally, the Reunion evaluation shows that the compar-
ison latency, the time required to transmit and compare a
fingerprint, is a critical performance factor in multithreaded
workloads [5]. While most comparisons can overlap with fur-
ther execution, serializing instructions (such as traps, memory
barriers, and non-idempotent I/O) cause execution to stalluntil
the serializing instruction has been checked. This exposes
execution stalls for the entire comparison latency, directly
impacting performance. The observed delay is fixed for ded-
icated datapaths, while the latency observed in an on-chip
interconnect varies based upon memory system contention.
Our evaluation quantifies this latency.

4. RESULTS

In this section, we first present our simulation method-
ology, followed by our results and analysis. We discuss the
viability of our approach, the factors affecting the performance
of our design, and finally, the effect of our design on rest of
the system.

4.1 Methodology

We evaluate the designs using the Flexus full-system
CMP performance simulator. Parameters and workloads are

3

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56 64
Fingerprint comparison interval (instructions)

No
rm

al
ize

d
IP

C
Web
OLTP
DSS
Scientific
Web
OLTP
DSS
Scientific

Fig. 2. Performance sensitivity to fingerprint comparison interval for
dedicated datapaths (solid lines) with a fixed latency of 10 cycles, and on-chip
memory interconnect (dashed lines). Normalized to a baseline lockstepped
system.

0
2
4
6
8
10

0 8 16 24 32 40 48 56 64
Fingerprint comparison interval

(instructions)

Re
la

tiv
e

L2
 b

an
dw

id
th Web

OLTP
DSS
Scientific

Fig. 3. Interconnect bandwidth utilization as the fingerprint comparison
interval increases. Normalized to the baseline shared cacherequest traffic.

described in [5]; we summarize the parameters here. The
baseline design is a eight-core CMP with idealized lockstepped
processor pairs (four logical contexts) that have no perfor-
mance overhead from redundant execution or error checking.
The processors are four-wide out-of-order SPARC v9 cores,
with a 256 entry re-order buffer, 64-entry store buffer and
64kB private L1 caches with two load ports and one store
port. The shared cache is a 16MB with four banks, connected
to cores through the crossbar described earlier. We also model
a Reunion system with a fixed 10-cycle inter-core fingerprint
comparison latency across a dedicated datapath and the exper-
imental system with fingerprint messages transmitted over the
on-chip memory interconnect.

Our workloads include Apache and Zeus web servers run-
ning SPECWeb99, Oracle 10g and IBM DB2 ESE 8 with a 100
warehouse online transaction processing (OLTP) application,
DB2 with decision support system (DSS) queries 1 and 2, and
scientific workloadsem3d, moldyn, ocean, andsparsewhich
show a range of memory access behaviors. Detailed workload
parameters are in [5].

4.2 Evaluation

Factors affecting performance.To measure the system per-
formance impact of our design, we compare the user-mode IPC

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

In
st

an
ce

s
(%

)

C
um

ul
at

iv
e

In
st

an
ce

s
(%

)

Transmission latency (cycles)

Fingerprint Latency Distribution
Cumulative Fingerprint Latency Distribution

Fig. 4. Fingerprint latency distribution: Representativescientific workload
(ocean, 32-cycle comparison interval).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100

In
st

an
ce

s
(%

)

C
um

ul
at

iv
e

In
st

an
ce

s
(%

)

Transmission latency (cycles)

Fingerprint Latency Distribution
Cumulative Fingerprint Latency Distribution

Fig. 5. Fingerprint latency distribution: Representativecommercial workload
(DSS query 1, 32-cycle comparison interval).

of the systems. Figure 2 shows the effect of increasing the fin-
gerprint comparison interval on performance for a system with
a 10-cycle dedicated datapath and a system using the on-chip
memory interconnect. The comparison interval determines
the additional pressure applied to the memory interconnect,
which in turn impacts memory access latencies and system
performance. These results indicate that for the larger compar-
ison intervals (32 instructions or larger), the impact of such
pressure is negligible. However, for the shorter comparison
intervals (16 instructions or less), bandwidth pressure onthe
cache ports and crossbar severely impacts performance. This
demonstrates the viability of on-chip memory interconnects
for larger comparison intervals.

Figure 3 shows our design’s memory interconnect band-
width demands, normalized to the baseline L2 memory band-
width for each workload class, as the fingerprint comparison
interval increases. The results clearly show much higher
bandwidth demands at shorter comparison intervals—many
times the bandwidth required to support the existing workload
traffic—which causes contention for buffers and increased
latencies for both cache transactions and fingerprint messages.

In addition to the comparison interval, the comparison
latency and the memory access patterns of the workloads are
factors that affect the performance of our design. Fingerprint
transmission latencies affect performance because cores stall
retirement until fingerprints are received. Because our design
uses the memory interconnect to transmit fingerprints, the
transmission latency varies and is dependent upon contention
in the interconnect. Our experiments show that for the shorter
comparison intervals, the transmission latency is affected
heavily by the length of the interval, because in these cases,

4

0
50
100
150
200
250
300
350
400

0 8 16 24 32 40 48 56 64
Fingerprint comparison interval (instructions)

Av
era

ge
 L2

 ca
ch

e l
ate

nc
y

(cy
cle

s)
Web
OLTP
DSS
Scientific

Fig. 6. Average shared L2 cache access latency with on-chip memory
interconnects, as the comparison interval increases.

TABLE I

TRANSMISSION LATENCIES(CYCLES), 32 INSTRUCTION INTERVAL.

Range Mean
Web 5 - 89 6.6
OLTP 5 - 84 7.1
DSS 5 - 75 6.6
Scientific 5 - 66 11.5

fingerprint messages dominate the total interconnect traffic.
For larger comparison intervals, the nature of the workload
(in particular, the workload’s interconnect bandwidth usage)
determines the fingerprint transmission latency, and thus also
overall performance.

Figures 4 and 5 show the distribution of the fingerprint
transmission latencies for representative scientific and com-
mercial workloads, respectively. The difference in distribution
between the scientific and commercial workloads is explained
by the higher interconnect bandwidth utilization of the scien-
tific workloads, and therefore higher L2 latency. Furthermore,
the higher IPC and higher L2 request volume of the scientific
workloads cause fingerprint messages to be queued behind
cache requests, resulting in fingerprint messages that are de-
layed by L2 requests (a 35-cycle latency), as seen in Figure 4.

Table I summarizes the fingerprint transmission latency
ranges and averages for the workloads when using the in-
terconnect to transmit fingerprints. The comparison interval
is 32 instructions for these experiments. For 32-instruction
and larger comparison intervals, a constant delay of 10 cycles
on the baseline system with dedicated datapaths is a good
approximation of the performance of our design that uses the
interconnect, as corroborated by several performance charts
presented in this section.

System Impact. To confirm the reasons behind our perfor-
mance results and to examine the effects of our design on the
rest of the system, we measured the increase in the system’s
mean L2 access latency, which directly impacts performance.

The consequence of inducing additional traffic in the mem-
ory interconnect is increased L2 access latencies. Figure 6
shows the impact of our design on the L2 latency across a
range of comparison intervals. The correlation of the L2 access
latencies (Figure 6) and bandwidth utilization (Figure 3),with
the corresponding impact on throughput (Figure 2) indicates
that the poor performance of the shorter comparison intervals
is caused by contention for the memory interconnect. Intercon-
nect contention becomes a negligible issue as the comparison
intervals grow larger.

5. CONCLUSION

Fingerprinting is an efficient mechanism for error detec-
tion across redundant cores in a chip multiprocessor. Past
fingerprinting approaches have assumed dedicated datapaths
between cores to transport fingerprints. Our main contribution
is to show that fingerprints can instead be transported usingex-
isting infrastructure, namely the on-chip memory interconnect.
Advantages of our design include simplicity through reuse of
existing hardware, flexibility, and scalability. We show that for
reasonable fingerprint comparison intervals, our design does
not affect memory access latency, and carries virtually no
overhead.

REFERENCES

[1] T. Juhnke and H. Klar, “Calculation of the soft error rateof submicron
cmos logic circuits,”IEEE Journal of Solid State Circuits, vol. 30, no. 7,
pp. 830–834, July 1995.

[2] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L.Alvisi,
“Modeling the effect of technology trends on soft error rateof com-
binational logic,” in International Conference on Depdendable Systems
and Networks, June 2002.

[3] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and evalu-
ation of redundant multi-threading alternatives,” inProceedings of 29th
Annual International Symposium on Computer Architecture, 2002.

[4] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Transient-
fault recovery for chip multiprocessors,” inProceedings of 30th Annual
International Symposium on Computer Architecture, 2003.

[5] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Re-
union: Complexity-effective multicore redundancy,” inProceedings of
ACM/IEEE International Symposium on Microarchitecture (MICRO-39),
Dec 2006.

[6] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G.
Nowatzyk, “Fingerprinting: Bounding soft-error detection latency and
bandwidth,” inProceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Oct 2004, pp. 224–234.

[7] OpenSPARC T1 Microarchitecture Specification, Sun Microsystems, Aug
2006.

